MEINE WELT

Sonne, Mond und Sterne ... für kleine und große Kids Versuch einer Beschreibung von Dani Berretti - 2016 © Travelmaus.de

Wer kennt nicht den Merksatz:

"Mein Vater erzählt mir jeden Sonntag unsere neun Planeten…"?

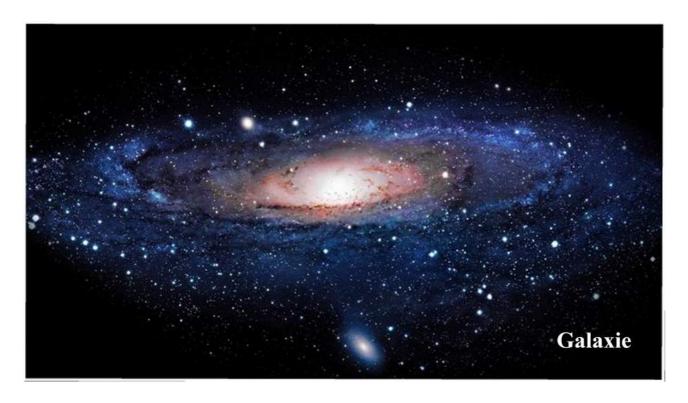
Da möchte ich dann doch was zu sagen, denn so stimmt der Merksatz nicht mehr. Man hat nämlich den kleinsten Planeten "Pluto" erst vor kurzer Zeit einfach rausgeschmissen. Er schien nicht mehr ins System zu passen, weil irgendeine wissenschaftliche Formal dagegen sprach. Oder er ist möglicherweise als ein sehr großes Mitglied


des "Kuiper-Gürtels" erkannt worden. Nun irrt er einsam und verlassen durch den Weltraum und sucht vielleicht eine neue Zuordnung. Leider kann ich ihm die Zuordnung nicht geben. Auf meine Stimme hört man nämlich nicht. Und dem Merksatz fehlt nun der Pluto. Man müßte nun den Merksatz umschreiben, beispielsweise in:

"Mein Vater erklärt mir jetzt sporadisch ungern nix."

Oder möglich wäre auch:

"Mein Vater erntet meist jeden Sonntag unsere Nüsse"


und damit kann man sich die Reihenfolge unserer Planeten wieder merken:

Fangen wir mal ganz vorne an. Beim Urknall. Da ist unser Universum entstanden, sagt man. Möglicherweise war es auch ein Zufall. Das weiß die Menschheit nicht wirklich. Soll vor ca. 14 Milliarden von Jahren passiert sein. Dabei sind dann Raum, Zeit

und Materie entstanden. Anfangs muss das Universum extrem dicht und heiß gewesen sein. Das heutige Universum mit seinen Trilliarden von Sternen ist also das Ergebnis des sogenannten Urknalls.

Es haben sich im Laufe der Zeit bis heute unzählige Milchstraßen gebildet. Das ist eine Anhäufung von Galaxien, die wiederum jeweils eine Anhäufung von Planetensystemen sind. Unser Planetensystem gehört zu einer solchen Galaxie. Und darin sind wir nur *ein* Planetensystem von vielen. Und die Erde ist Teil von einem dieser Planetensysteme.

Gemessen wird die Ausdehnung des Universums in Lichtjahren. Ein Lichtjahr ist die Distanz, die Licht in einem Jahr zurücklegt: ca. 9,6 Billionen Kilometer. Oder anders: Das Licht legt in einer Sekunde fast 300 000 km zurück bzw. etwa eine Milliarde Kilometer pro Stunde. Das ist schon was. So schnell ist sonst nix!

Kann man kaum nachvollziehen. Das alles sind unvorstellbare Größen! Aber versuchen wir es mal weiter.

Bei unserer Galaxie, der sog. Milchstrasse, handelt es sich um ein gewaltiges System aus 200 300 Milliarden bis einzelner Sterne. Es hat. von der Seite die Form betrachtet. einer Scheibe mit einer Verdickung in der Mitte. Von oben gesehen die Milchstraße aleicht einer Spirale, deren Arme vom Zentralbereich ausgehen und sich

Das Universum dehnt sich aus, immer weiter und schneller von unserer Erde aus. Nein, wir sind aber nicht der Mittelpunkt des Universums. Auch wenn im Mittelalter die Menschen glaubten, die Erde wäre der Mittelpunkt der Welt, und das auch noch als Scheibe.

Aber das wollen wir den Menschen des Mittelalters nicht übel nehmen, denn sie hatten ja noch keine Raumsonden und auch kein Hubble – Weltraummikroskop. Das Hubble-Mikroskop umgeht die Atmosphäre der Erde und kann so bessere Ergebnisse liefern über unser Universum. Hat bisher gute Dienste geleistet, soll sogar 2018 eine Art

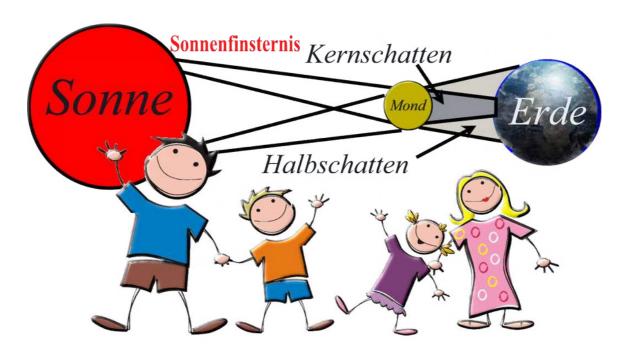
Update bekommen, indem ein neues System ins All befördert wird. Dann wird es wohl auch umgetauft werden von Hubble in Webb.

Unser Sonnensystem ist nur eines von ungezählten Milliarden Sonnensystemen im Universum. All die leuchtenden Sterne am nächtlichen Himmel sind nichts anderes als Sonnen.

Planeten erkennt man mit den Augen kaum oder gar nicht, denn sie leuchten ja nicht. Sie werden nur angestrahlt von den Sonnen. Und Planeten haben Monde, die dann die Planeten umkreisen als Anhängsel. Die Erde ist ein Planet. Und sie hat auch einen Mond.

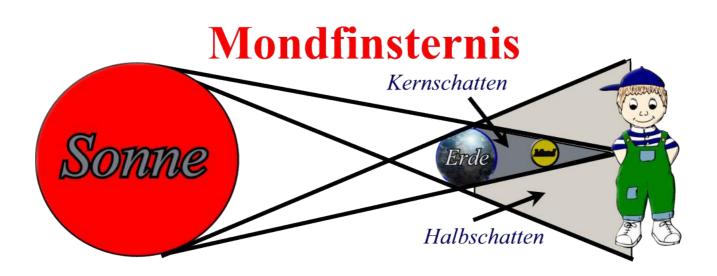
Unser Sonnensystem hat sich aus einem Urnebel entwickelt, der aus Gas und Staubpartikeln bestand. Wie letztlich sich die Planeten um die Sonne gebildet haben, muss wohl sehr kompliziert gewesen sein und hat sehr, sehr lange gedauert. Das hier zu erklären überschreitet auch mein Vorstellungsvermögen. Aber es ist so, Wissenschaftler haben sich intensiv damit beschäftigt

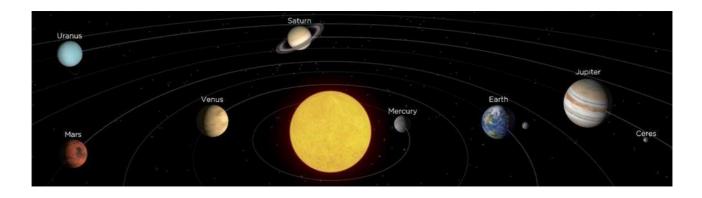
Unser Sonnensystem entstand nach Erkenntnissen der Wissenschaftler vor ca. 4,6 Milliarden Jahren. Unsere Sonne ist ein ganz normaler Fixstern, weder extrem groß noch außergewöhnlich heiß oder kühl. Die Sonne umfaßt etwa 99,8 %der Gesamtmasse unseres Planetensystems. Also sind die Planeten fast ein Nichts dagegen. Aber als Bürger der Erde muss ich mich natürlich dagegen wehren, denn ich lebe auf der Erde und halte die Erde für wahnsinnig groß. Aber lassen wir die Behauptung mal im Raume stehen.


Unsere Sonne ist eine riesige Gaskugel, hat keinen festen Kern, hat einen Durchmesser von 1,4 Milliarden Kilometern. Ganz schön groß! Unvorstellbar groß! Gigantisch! Würde man die Sonne mit Erdkugeln bestücken, müßte man 1,3 Mill. Erdkugeln haben. Und die Sonne dreht sich wie die Erde um sich selbst. Am "Äquator" benötigt sie für eine Umdrehung 26 (Erd-)Tage.

Man kann immer wieder bestimmte Phänomene der Sonne beobachten, beispielsweise u.a. die Sonnenflecken, die sich in 11-jährigem Zyklus wiederholen. Dafür hat man allerdings noch keine Erklärung gefunden. Da sucht man halt noch.

Im Kern der Sonne herrscht eine Temperatur von etwa 15 Mill. Grad, die äußeren Gasschichten haben immer noch eine Temperatur von 5.500 Grad Celsius. Und ich schwitze schon bei 30°C auf der Erde. Die weitere Lebensdauer der Sonne wird auf 5 bis 6 Mrd. Jahren geschätzt. Ob die Menschheit das noch erleben wird?

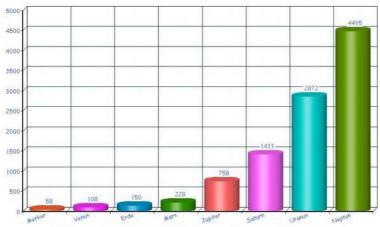

Erwähnen muss ich natürlich noch den Begriff "Sonnenfinsternis". Immer wenn eine solche stattfindet, spielt die Presse ja fast verrückt, denn dann schiebt sich der Mond zwischen Sonne und Erde und deckt dann die Sonne teilweise oder auch ganz ab. Trotzdem ist die Sonne aber immer noch ein unbekanntes Wesen, erst recht für mich.



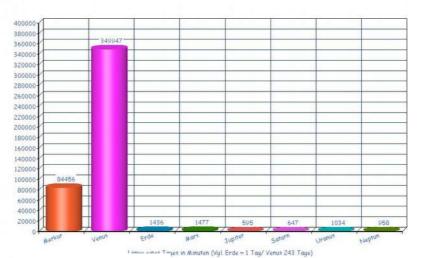
Doch kommen wir mal zu unserem Planeten Erde. Den kennen wir ja und können ihn auch anfassen. Unseren Mond können wir natürlich nicht anfassen, obwohl da schon einige wenige Menschen

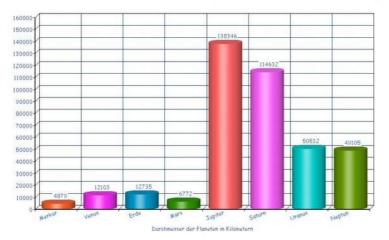
drauf waren. Sagt man. Einfach ausgedrückt. der Mond umkreist die Erde, und Erde Mond umkreisen und Sonne Aber in Wirklichkeit muss es heißen, der Mond umkreist auf seiner elliptischen gemeinsamen Bahn den Schwerpunkt von Mond Erde. Ist aber schwer zu begreifen.

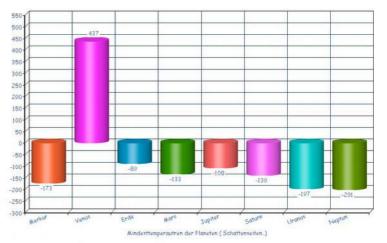
Und auch hier gibt es eine Mondfinsternis, die dann stattfindet, wenn der Mond auf seiner Umlaufbahn um die Erde durch den vom Sonnenlicht erzeugten Schatten läuft. Dazu müssen aber Sonne, Erde und Mond in einer Linie stehen. Naja, muss man nicht alles verstehen. Es gibt Einfacheres auf der Erde.

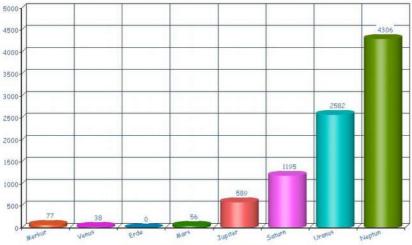


Sehen wir uns unsere Planeten etwas genauer an:

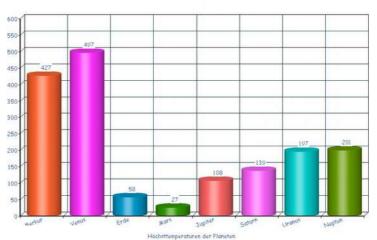

Planeten	Abstand zur Sonne in Mio. km (Durchschnitt)	Durch- messer in km	Umlauf um die Sonne in Tagen	Länge eines Tages in T, h, min	Zustand	Abstand zur Erde min/max in Mio. km	Temperatur in Grad C. min/max
Merkur	58	4 879	88	58 T, 15 h, 36 min.	fest	77 / 222	- 173 + 427
Venus	108	12 103	225	243 T, 17 min	fest	38 / 261	+ 437 + 497
Erde 1 Mond	150	12 735	365	23 h, 56 min.	fest	0/0	- 89 + 58
Mars 2 Monde	228	6 772	687	1 T, 37 min.	fest	56 /401	- 133 + 27
Jupiter 67 Monde	758	138 346	4 329 < 12Jahre	9 h, 55 min.	gasförmig	589 / 968	- 108 + 108
Saturn 3 Monde	1 433	114 632	10 751 < 30 Jahre	10 h, 47 min	gasförmig	1 195/ 1 658	- 139 + 139
Uranus 27 Monde	2 872	50 532	30 664 > 84 Jahre	17 h, 14 min	gasförmig	2 582 / 3 157	- 197 + 197
Neptun 14 Monde	4 495	49 105	60 148 < 615 Jahre	15 h, 58 min	gasförmig	4 306 / 4 687	- 201 + 201

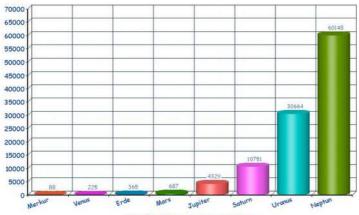

(Zahlen: ohne Gewähr/Irrtümer vorbehalten)

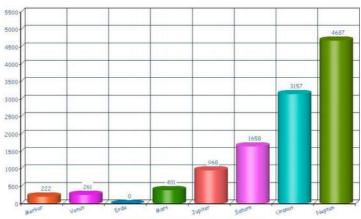

Vielleicht sollte man sich zu den Zahlenwerten die folgenden Grafiken ansehen. Dann kann man die Zahlen besser verstehen. Ich verstehe sie dann jedenfalls besser. (Quelle: astrokramkiste.de & www.diagrammerstellen.de)



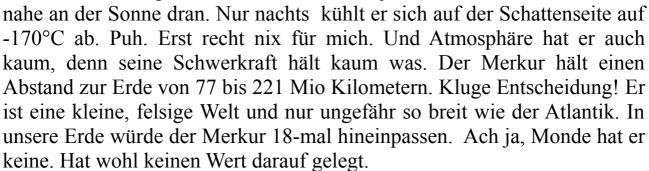
Abstand der Planeten zur Sanne in Mio. km. (Quelle: astrokramkiste.de/diagrammerstellen.de/ Travelmaus.de)







Mindestabstand der Erde zu den übrigen Pl-- **- (= **)- !--


Umlauf der Planeten um die Sonne in Tanen

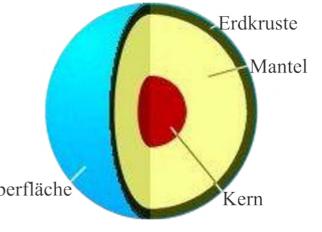
Höchstabstand der Erde zu den Planeten in Mia. Kilometern

Nun aber mal wieder zu den Beschreibungen unserer Planten. Man wird ja ganz durcheinander bei den vielen Säulen. Aber hast du denn mal nachgefragt, warum so große Unterschiede bei den Säulen sind? Klar, hast du. Die Entfernung der Planeten innerhalb unseres Planetensystems ist natürlich ganz, ganz wichtig dafür. Aber auch andere Faktoren sprechen da mit. Beispielsweise, ob ein Planet von einem Mantel, einer sogenannten Atmosphäre, umgeben ist. Unsere Erde ist da wirklich bevorzugt. Gehen wir mal die Reihenfolge der Planeten von der Sonne aus gesehen durch:

Merkur: Er ist der innerste und kleinste Planet und umläuft die Sonne in 88 Tagen. Er benötigt ungefähr ~ 58 Tage, um sich um die eigene Achse zu drehen. Sein Durchmesser beträgt 4.878 Kilometer und hat eine Masse von 330 Trillionen Tonnen und eine mittlere Dichte von 5,43 g/cm³. Alles unwichtig! Die Oberfläche soll 430° C betragen, denn der Kleine ist ja sehr, sehr

Venus: Auch die Venus hat keinen Mond. Hat sie auch nicht verdient, denn sie ist sehr lebensfeindlich. Sie hat Temperaturen von ca. 470°C, einen extrem hohen Atmosphärendruck und einen sehr hohen Anteil an Kohlendioxid, Schwefelsäuredampf und Schwefeldioxid in der Atmosphäre. Mit anderen Worten: ein unerträglicher Treibhauseffekt. Woher ich das weiß? Nein, ich war

natürlich nicht da. Auch nicht in Gedanken. Aber die Wissenschaft hat das festgestellt und mir mitgeteilt. Man hat mir auch gesagt, dass die Venus 225 Tage benötigt, um sich um die Sonne zu drehen und 243 Tage um die eigene Achse. Interessant ist vielleicht noch, dass man Anzeichen gefunden hat, die auf bewegliche Oberflächenplatten hinweisen, ähnlich der "Plattentektonik" auf der Erde. Die Venus hält einen Abstand zu uns zwischen 38 und 260 Mill. Kilometern. Gut so! Wir wollen ja keine Kollision mit ihr. Ihr Durchmesser am Äquator beträgt 12.104 km, der Durchmesser am Äquator ist der Erde vergleichbar 12.756 km. In Hinsicht kann man behaupten, dass gewisser die Venus Zwillingsschwester unserer Erde ist. Sie hat ungefähr die gleiche Größe und besteht aus den gleichen Gesteinsarten.



Erde: Sie hat den drittkleinsten Abstand zur Sonne. besitzt einen Mond und auch ein Magnetfeld. Mit etwa 6.378 km Radius ist sie der größte Planet in unserem Sonnensystem mit fester Oberfläche, das 6t-größte Objekt und das mit der höchsten Dichte. Also alles bestens Unsere Erde

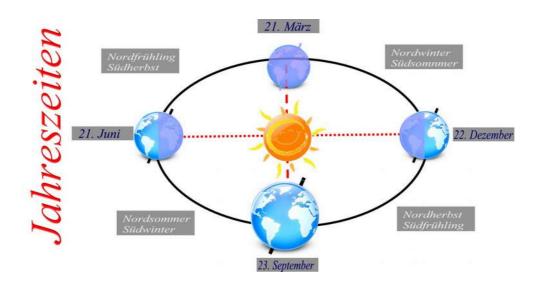
zwischen 147 und 152 Mill. Kilometern von der Sonne entfernt, dreht sich innerhalb von ~ 365 Tagen einmal um die Sonne und dreht sich knapp innerhalb von 24 Stunden einmal um die eigene Achse. Da können wir uns nicht beschweren. Aber in der langen Erdgeschichte waren diese Zahlen nicht immer so. Aber das wollen wir jetzt und hier nicht wissen. Das sollen andere für uns mal nachschlagen. Ist für uns zurzeit auch unwichtig.

Die Erde hat folgende Schichten: Erdkern, Erdmantel, Erdkruste.


Der Erdkern hat einen Durchmesser von mehr als 6.000 km und besteht vorwiegend aus einer 6.000°C heißen Metallschmelze aus Eisen und Nickel. Um den Erdkern liegt der ca. 3.000 Kilometer dicke Erdmantel. Seine Temperatur nimmt mit wachsender Tiefe zu, außen beträgt sie mehrere 100°C, nahe der Grenze zum Kern ca. Oberfläche 3.500°C. Aber auf der Erdoberfläche

merken wir nix davon. Fast nix, denn manchmal teilen uns die Vulkane auf der Erde mit, dass in der Unterwelt doch einiges los ist und den Menschen ganz schön gefährlich werden kann. Aber das ist ein eigenes Thema und gehört hier nicht hin.

Der obere Mantel der Erde ist von der Erdkruste bedeckt, die aus 30 km bis 300 km dicken, dicht aneinander grenzenden Platten aus Gesteinen besteht, die leichter sind als das Material des oberen Erdmantels. Die Krustenplatten unter den Ozeanen sind 30 bis 100 km dick und bestehen aus Basalt. Die Krustenplatten der Kontinente sind 100 bis 300 km dick und bestehen aus Granit. Sie liegen auf dem schwereren Material des oberen Erdmantels. Da sich das Material an der Oberseite des oberen Erdmantels, angetrieben von den Konvektionsströmungen im Erdmantel in horizontaler Richtung bewegt, bewegt es die darauf liegenden Krustenplatten mit. Auch als Plattentektonik bekannt. Klingt alles sehr kompliziert. Da muss man schonmal genau nachlesen. Die Bewegungen der Erdplatten sieht man nicht, weil sie so extrem langsam sind. Messen kann man das schon. Allerdings rummst manchmal die Erde gewaltig. Schwere Erdbeben verschieben dann die Platten, manchmal um mehrere Meter. Und das kann schlimme Folgen für uns Menschen haben.



Über 71% der Erdoberfläche sind von Ozeanen bedeckt. Im globalen Durchschnitt sind die Ozeane 3.862 m tief. Sie spielen beim Energiehaushalt der Erde als Himmelskörper eine wichtige Rolle und sind zudem von zentraler Bedeutung für das Erdklima. Aber das würde dann hier doch zu weit führen. Hauptsache, ich habe in meinem Umfeld angenehme Temperaturen und muss weder extrem heizen noch kühlen, um angenehme Tagestemperaturen zu haben. Das wollen wir auch nicht ändern! Und wehe, es versucht einer!

Ich bin ein Weltraumreisender. Mit ca. 30 km in der Sekunde umrunde ich mit der Erde unsere Sonne. Außerdem dreht die Erde sich wie ein etwas schief stehender Kreisel rasend schnell um sich selbst. Wer am Äquator lebt, reist mit einer Geschwindigkeit von 1.670 km/h von Westen nach Osten, die Bewohner der Polargebiete natürlich weniger schnell. Da sich aber alles um uns herum genauso schnell bewegt wie wir, wird uns unsere hohe Fahrtgeschwindigkeit normalerweise gar nicht bewusst. Am besten können wir unsere Geschwindigkeit daran erkennen, wie schnell Sonne, Mond und Sterne scheinbar unseren Himmel durchqueren. Wer sich aber eigentlich dabei bewegt, sind wir.

Unsere Jahreszeiten verdanken wir der Neigung der Erdachse, die den Nord- und den Südpol verbindet. Wenn der Nordpol zur Sonne hin geneigt ist, haben wir in den nördlichen Ländern Sommer. Zeigt der Nordpol von der Sonne weg, ist in diesen Ländern Winter. Südlich des Äquators herrscht immer genau die gegenteilige Jahreszeit.

Mars: Der Mars ist der vierte Planet im Sonnensystem. Er umkreist die Sonne in einer durchschnittlichen Entfernung von 228 Millionen km. Das ist eineinhalbmal so weit wie die Erde. Der Sommer in der Nähe des Äquators kann zwar recht warm werden, aber die mittlere Temperatur liegt um 63 Grad Celsius unter Null und ist somit mit dem Winter in der Antarktis

vergleichbar. Uns Menschen würde es bei einem Besuch auf dem Mars daher ziemlich kalt vorkommen. Er wird häufig als der "rote Planet" bezeichnet, weil er am Nachthimmel wie ein orangeroter Stern erscheint. Dafür ist aber "Rost" im Gestein auf dem Planeten verantwortlich. Und da wollen die Menschen hin! Jedenfalls hört man in der Presse davon. Nee, nix für mich. Doch die ersten Menschen auf dem Mars werden noch mehr Probleme zu bewältigen haben, denn die Luft ist dort 100-mal dünner als auf der Erde und besteht größtenteils aus Kohlendioxid. Ohne Sauerstoffmasken und Spezialkleidung läuft da gar nix. Wirklich!

Jupiter: Außerhalb des sogenannten Asteroidengürtels befindet sich Jupiter, der fünfte Planet im Sonnensystem. Asteroidengürtel wird die Ansammlung von Asteroiden und Zwergplaneten im Sonnensystem genannt, die sich zwischen den Planetenbahnen von Mars und Jupiter befindet. Jupiter ist so groß, dass alle anderen Planeten problemlos in ihn hineinpassen würden. Er wiegt auch mehr als das Doppelte aller anderen Planeten. Trotz seiner riesenhaften Größe ist Jupiter aber der

Planet, der sich am schnellsten dreht. Für eine Drehung um sich selbst braucht er weniger als zehn Stunden. Das sind ganz kurze Tage im Vergleich zur Erde. Für mich wäre das nix, denn ich hätte viel zu wenig Zeit, meine Nachtruhe zu genießen. Allerdings über Tag müßte ich auch nur die halbe Zeit arbeiten. Aber das ist kein Grund, dorthin umzuziehen. Ginge auch gar nicht, denn Jupiter ist eine gigantische Gaskugel ohne feste Oberfläche. Die auffälligste Erscheinung, der Große Rote Fleck, ist ein riesiger Sturm, dessen Ausmaße ein Vielfaches der Größe der Erde erreichen. Er tobt bereits seit über 300 Jahren ununterbrochen über dem Jupiter. Da bleibe ich auch lieber auf der Erde. Hier sind die Stürme noch

erträglich. Zum Jupiter hat man vor Jahren die Voyager-Raumsonde losgeschickt, die ein schwacher Staubring um den Jupiter entdeckt hat, der mehr als 100.000 Kilometer breit ist. Außerdem umkreist ihn eine große Anzahl von Monden, gezählt hat man 63, vier davon sind sehr groß.

Saturn: Er ist der 6te Planet im System. Die Erde würde ganze 764mal in den Saturn passen, und trotzdem wiegt der Gasriese nur das 95fache unserer steinigen Welt. Wenn wir alle Planeten in einen See legen könnten, wäre Saturn der einzige, der auf der Wasseroberfläche schwimmen

würde. Huch, schade, dass man das nicht überprüfen kann. Er hat keine feste Oberfläche. Auch das noch. Was wir als helle und dunkle Streifen erkennen, sind also nur Wolken. Winde entstehen größtenteils durch die Hitze, die vom Inneren des Planeten abgestrahlt wird. Über den Wolken befindet sich ein flaches, scheibenförmiges Ringsystem. Hat ja nicht jeder Planet.

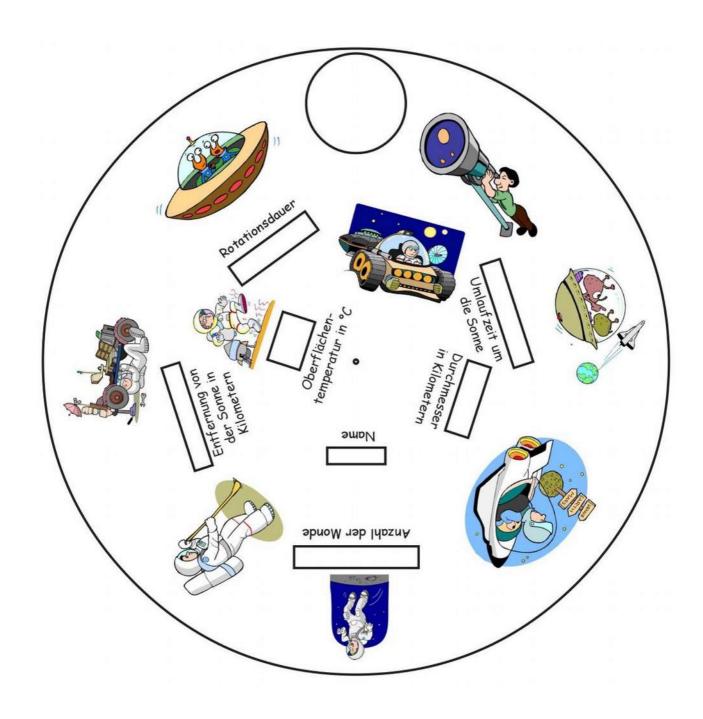
Uranus: Er ist der siebte Planet im Sonnensystem und wurde 1781 entdeckt. Mehr als 2.800 Millionen Kilometer trennen den Uranus von der Sonne. Bei dieser Entfernung ist es nicht verwunderlich, dass die Temperatur an der Oberseite seiner Wolken um -200°C beträgt. Da er sich ziemlich langsam bewegt und einen

langen Weg hat, dauert eine Sonnenumrundung ganze 84 Jahre. Unsere Erde würde 64-mal in diese riesige Welt passen. Doch trotz seiner Größe dreht er sich schnell um sich selbst. Ein Tag auf dem Uranus dauert nur 17 Stunden und 14 Minuten. Würdest Du dort hin wollen? Ich jedenfalls nicht. Stell dir vor, an den Polen herrscht 21 Jahre lang Sommer bzw. an einem Stück Winter! Der Uranus besitzt 27 uns bekannte Monde. Aber keiner davon ist besonders groß. Außerdem hat der Uranus mindestens zwölf dunkle Staubringe. Die meisten dieser Ringe sind extrem dünn. Sie bestehen aus Millionen Brocken, die um den Uranus kreisen und schon einen Durchmesser bis zu 10 Metern haben können.

Neptun: Der Neptun wurde erst 1846 entdeckt und hat sich als ein nahezu identischer Zwilling des Uranus entpuppt. Er ist 57-mal größer als die Erde, rotiert aber ziemlich schnell, so dass ein Tag nur 16 Stunden und 7 Minuten dauert. Seine durchschnittliche Entfernung zur Sonne beträgt ungefähr 4.500 Millionen Kilometer, und ein Jahr auf ihm dauert beinahe 165 Erdenjahre. Sein

Innenleben besteht aus Eis und möglicherweise einem felsigen Kern. Die Atmosphäre ist zwar sehr kalt mit eta -220°C, aber trotzdem wehen auf dem blauen Planeten einige wirklich starke Winde und heftige Stürme. Neptun besitzt mindestens fünf dunkle, schmale Ringe und hat 13 Monde. Der mit Abstand größte davon ist Triton, eine Eiswelt, die größer ist als Pluto. Die dünne Atmosphäre des Triton ist an seine extrem kalte Oberfläche angefroren. Der Mond Triton hat aber was Besonderes, denn er hat zahlreiche aktive Eisvulkane, die Gas- und Staubwolken ausstoßen und er umkreist Neptun in der "falschen Richtung" (von Ost nach West). Wahrscheinlich wurde er vor sehr langer Zeit von Neptuns Schwerkraft eingefangen.

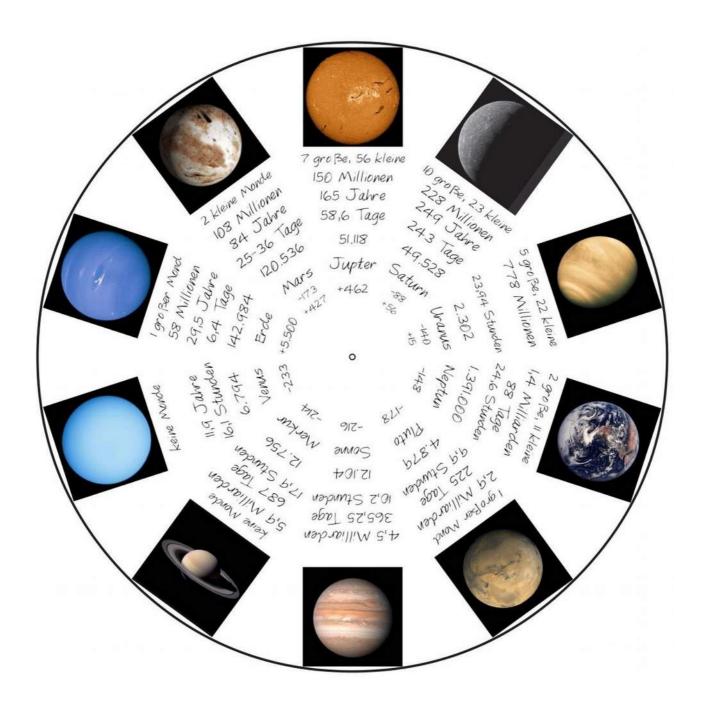
Pluto: Kurz ein paar Anmerkungen zum Pluto, den man 2006 kurzentschlossen aus dem System herausgeworfen hat. Er erscheint nur noch selten als Mitglied unseres Planetensystem. Gemein! Ist aber so. Und nur weil er so klein ist, gehört er nicht mehr dazu. Er entpuppte sich als winzige Welt, die sogar kleiner als unser Mond ist. Dabei ist er doch auch ganz groß! Er ist eines der größten Mitglieder des Kuipergürtels, einer Familie von Eiswelten, die den Raum über Neptun hinaus besiedeln. Und er rotiert rückläufig, d.h. er dreht sich von Ost nach West.


Seine Statistik sieht im Vergleich zu unserer Erde so aus:

Planet	Abstand zur Sonne in Mio. km (Durchschnitt)	Durch- messer in km	Umlauf um die Sonne in Tagen	Länge eines Tages in T, h, min	Zustand	Abstand zur Erde min/max in Mio. km	Temperatur in Grad C. in/max
Pluto	5.913	2.370	90.520 T. 248J	154 h 6,387 Tage	?	4,8 Mrd. km	- 230°C
Erde	150	12.735	365 T. 1 Jahr	23 h, 56 min.	fest	0/0	- 89 + 58

Ich hoffe, du hattest Spaß bei der "Durchquerung unseres Planetensystems". Wenn du möchtest, kannst Du mich besuchen unter: www.Travelmaus.de

Hier kannst Du eigene Notizen oder auch Handzeichnungen einfügen.


Planeten		
Merkur		
Venus		
Erde		
Mars		
Jupiter		
Saturn		
Uranus		
Neptun		

Bastelanleitung: Unser Sonnensystem (Quelle: Planetarium Recklinghausen)

Bastelbogen auf festes Papier ausdrucken und die 2 Scheiben ausschneiden. Die Vorderseite auf eine Bastelunterlage legen und mit einem Bastelmesser die Sichtfenster und das kleine Loch in der Mitte ausschneiden. Ebenso das Loch in der Mitte der zweiten Scheibe ausschneiden. Dann mit einer Büroklammer die beiden Seiten zusammenfügen. Als letztes die Rückseite aufkleben.

Einfach in das Namensfenster den Namen oder in das runde Fenster das Bild eines Planeten oder der Sonne einstellen und schon erfährt man die wichtigsten Daten: Die Entfernung des Planeten von der Sonne, den Durchmesser, die Rotationsdauer (die Zeit, die der Planet braucht, um sich einmal um sich selbst zu drehen), die Umlaufzeit um die Sonne (also die Länge eines 'Planetenjahres'), die Anzahl der Monde und die Temperatur.

Planetenweg: An der Westfälischen Volkssternwarte Recklinghausen gibt es einen 'Planetenweg', der unser Sonnensystem im Maßstab 1 zu 3 Milliarden darstellt. Das heißt, 1 Meter im Planetenweg sind in Wirklichkeit 3 Milliarden Meter (3 Millionen Kilometer) in unserem Sonnensystem. Unsere Sonne ist im Modell nur etwa einen halben Meter groß und steht an der Sternwarte. Unsere Erde steht etwa 50 Meter von der Modellsonne entfernt und ist nur so groß wie eine Erbse. Pluto ist in unserem Modell nur so groß wie ein Stecknadelkopf und steht mehr als 2 Kilometer entfernt am Recklinghäuser Rathaus. Mehr Informationen über den Planetenweg findet man auf der Homepage der Sternwarte. Westfälische Volkssternwarte und Planetarium Recklinghausen Stadtgarten 6, 45657 Recklinghausen, Tel.+Fax: 02361 / 23134 www.sternwarte-recklinghausen.de

Bastelanleitung: Erde

Den Planeten sauber ausschneiden. Insbesondere die spitzen Einschnitte an einigen Stellen müssen exakt in der Länge sein. Einige Klebelaschen grenzen mit zwei Seiten an den Planeten. In diesem Fall muss die kürzere Seite eingeschnitten werden, die längere Seite muss immer am Planeten bleiben. 2. Jetzt die Laschen von unten mit dem jeweils gegenüberliegenden Planetenteil zusammenkleben. Darauf achten, dass alle Laschen immer ganz unter der Planetenoberfläche liegen. Tipp: Die letzten Laschen zu kleben ist nicht ganz einfach. Notfalls klebt man die Stellen mit Klebefilm zusammen. (Quelle: sternwarte-recklinghausen.de)

Quellenangaben / Linksliste: Auswahl

Kinderseiten:

http://www.astro-comics.de/

http://astrokramkiste.de/sonnensystem

http://www.esa.int/esaKIDSde/Planetsandmoons.html

http://www.blinde-kuh.de/weltall/

http://www.br-online.de/kinder/fragen-verstehen/

http://www.lehrer-online.de/video-sonnensystem.php

Simulationen:

http://kuffner-sternwarte.at/astronomie/sonnensystem.php?id=Sonnensystem

http://www.solarsystemscope.com/

http://www.br-online.de/wissen-

bildung/spacenight/sterngucker/planeten/sonnensystem.html

http://www.michaelschultz.de/index.html

Sonstige:

http://www.astronomie.de/das-sonnensystem/planeten-und-monde/

http://spaceplace.nasa.gov/(englisch)

http://www.neunplaneten.de/nineplanets/nineplanets.html

http://www.deepskybeobachtung.de/index.php/interessante-links-zur-astronomie

http://icon-icons.com/search/icons/?filtro=globe

http://www.astronomia.de/sonnensystem.htm

http://www.faszination-astronomie.de.vu/

https://de.wikipedia.org/wiki/Sonnensystem

Youtube:

https://www.youtube.com/watch?v=pFPUaldy4KA https://www.youtube.com/watch?v=JVDlMGO4DoA https://www.youtube.com/watch?v=ZVXDD8BwVbg

https://www.youtube.com/watch?v=_otejKld8Yk https://www.youtube.com/watch?v=q3tVfYkolJg https://www.youtube.com/watch?v=LQZDlowpGew

1 //	J	,	1	